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Diffuse-interface effects near a cusp singularity on a free surface
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Cusp singularity on a free surface of a viscous fluid driven by a vortex dipole is resolved through nanoscale
molecular interactions. The cusp is formed at finite capillary number due to a decrease of surface tension
caused by conjoining interaction near the cusp. The related effects of cusp geometry are weak Marangoni flow,
vapor condensation, and a slight decrease of liquid density near the cusp creating a depletion tail downstream.
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I. INTRODUCTION namic theory is taking into account finite viscosity of the gas
phase treated by the original theory as inviscid, i.e., ignored
Classical hydrodynamics is plagued by stress singularitiealtogether. Egger$12] has resolved the interface profile

linked to singularities of free surfaces. These singularitiesiumerically for small but finite viscosity ratios, and showed
can be resolved only by modifying boundary conditions, ei-that the tip breaks, leading to air entrainment, way before
ther phenomenologically or through physical insight, e.g., byapproaching the cusped form or thinning to molecular di-
taking into account molecular interactions near the interfne€nsions. . _
faces. A notorious example is flow near a three-phase contact A different path was taken earlier by Shikhmurzdg],
line [1,2], where the physical models suggested to resolvé/ho suggested resolving this singularigs well as that at

the singularity range from activated flow in a first molecularth® contact ling by introducing in a phenomenological
layer [3,4] through interfacial relaxatiofs] to diffuse inter- manner an interfacial layer treated as a separate phase. Ad-
face theory[6—g]. vection of this layer along the interface causes changes of

A simpler but less known example is a cusp singularitysurface tension dependent nonlocally on the flow pattern and

on a free surface observed in flow induced by a vortex dipolef-ee‘j"ﬂ'gj back upon the flow through an analog of the Ma-

. . . fangoni effect.
[9]. An elegant two—d_mensmnaﬂZD) solution based on This paper continues the trend toward resolving a hydro-
conformal transformation was given by Jeong and Moffattd

. ynamic singularity by introducing a more refined physical
[10] and further extended tothe case of variable surface tenz,,qel on shorter scales. An interfacial layer of a finite

sion by Antanovski{11]. It was found that a cusp singularity (nanoscalg thickness appears in a natural way in diffuse
appears at Ca =, where Calpy/ vy, is the capillary num-  interface theory going back to van der Wagld]. The ad-
ber based on the characteristic flow velodity (related to  yantage of this theory is in a possibility to directly relate
the dipole strength dynamic viscositys, and standard sur-  short-scale modifications of hydrodynamic theory to molecu-
face tensiony, of a flat quiescent interface. The stress be-|ar interactions. The problem in question, where, unlike the
comes singular at the cusp tip. The singularity appearingontact line problem, a precise hydrodynamic solution exists,
asymptotically at vanishing surface tension would not bes a good testing ground for a more general challenge of
troublesome from the physical point of view, but for the resolving hydrodynamic singularities through molecular in-
extraordinary way it is approached. Although the curvature ateractions.

the tip remains formally finite at any finite Ca, the curvature  Coupling diffuse interface theory to hydrodynamics in-
radiusx~=2° exp(-32mCa) goes below molecular scale al- volves modification of macroscopic hydrodynamic equations
ready at Ca®©(10Y). Moreover, the cusp may appear al- by including thermodynamic driving forces arising in a non-
ready at finite Ca when surface tension vanishes at the cusggguilibrium fluid. This theory is essentially mesoscopic, and
tip [11]. assumes linear coupling between fluxes and thermodynamic
It must be noted that the formation of a cusp singularityforces in the spirit of Onsager’s nonequilibrium thermo-
is not a mere mathematical quirk, since it leads to a qualitadynamics. Local mesoscopic hydrodynamic theddp]
tive and physically significant change in flow pattern: amodifies hydrodynamic equations by including in the stress
stagnation line on the free surface disappears, and frelealance a reversible part of the stress tensor, called the
surface streamlines proceeddirectly into the fluid interior.capillary tensor, which is derived from an applicable free
Jeong and Moffatf10] dismiss the question of what “really energy functional. This theory fails, however, to incorporate
happens” near the tip as “philosophical,” but it is indeed akinetic retardation of interphase transport, as the only dissi-
physical question dependent on weak corrections to hydrgeation mechanism explicitly included in this theory is viscos-
dynamic theory, which become important only close to theity. Relaxation to the equilibrium density distribution in
singularity. thin interfacial layers might be described, in the spirit of
The additional factors coming into play near the singular-Cahn-Hilliard theory[16], by including diffusional fluxes
ity might be of either physical or hydrodynamic nature. Thedriven by gradients of chemical potential. This, however,
most straightforward correction remaining within hydrody- brings about conceptual difficulties, since diffusional and ad-
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vective fluxes cannot be separated in a unique way in a one- ¥
component fluid. 3
The formidable task of formulating and solving coupled
kinetic and hydrodynamic equations is relieved by a great 2
disparity of scales. This allows one to separate the inner
interfacial region where macroscopic flow velocity is con-
stant and the interface is close to equilibrium, and the outer
region where flow is incompressible, while weak gradients of
chemical potential are relaxed by diffusion. Macroscopic _;
flow driven by external sources will remain unaffected by
gradients of chemical potential almost everywhere. Never- -2
theless, coupling to the inner region influences the flow
through boundary conditions sensitive to changes of surface o )
tension and interphase transport. The corrections, even FIG. 1. The equilibrium curve.=g(p) computed using EqAG)

minute, may become essential when the classical hydrod)yy'th B=9. The value of the chemical potential at Maxwell construc-
namic ,solution is singular tion ug is taken as the zero level. The shift of chemical potential

The peculiarity of the cusp is a drastically increasing as_due to proximity of the interfaceg and the dynamic shifh u near

) O . . .the cusp are indicated by dashed lines. The dotted line indicates the

pect ratio at close approach to the tip; as a result, its Wldtfll . , ;

. . . liquid density depletion.
falls into the nanoscale range already at mesoscopic dis-
tances from the tip. This brings about several physical ef- ) )
fects, which we shall consider in turn. First, the conjoiningWhere f(p) is free energy per particle of a homogeneous
interaction of two interfaces at close approach changes thitlid and U(r) is an isotropic pair interaction kernel with a
surface tension, which withers gradually to zero at the tip, aghort-scale cutoffd. The chemical potentialu=46F/5p
discussed in Sec. Il. The hydrodynamic solution with vari-enters the respective Euler-Lagrange equation obtained by
able surface tension is obtained using the conformal transfoinimizing the grand ensemble thermodynamic potential
mation techniqug10,11 in Sec. Ill. In Sec. IV we turn at-  ®=F-u[p d°x, which defines the equilibrium density dis-
tention to mass transport facilitated by shifts in equilibrium tribution p(x):
chemical potential, bringing about vapor condensation. This,
in turn, facilitates rem_ova[ of a neutral cqmpongait) from g(p) — +f UM)[p(x +1) - p(x)]d% =0, (2
the narrow gap by diffusion, thereby eliminating backflow r>d
and preventing pressure buildup in the narrow gap, as dis- .
cussed in Sec. V. Diffusion on the background of the macroWnere g(p)=dipf(p)]/dp. The function p[f(p)-x] should

P . )
scopic flow manifests itself only in a weak density depletionN@V€ o minimapg corresponding to two stable uniform
downstream from the cusp tip. equilibrium states of higher and lower densitiquid and

vapor.
A typical functiong(p) defining the dependenqe(p) for
Il. SURFACE TENSION AND CONJOINING POTENTIAL a homogeneous fluid is shown in Fig. 1. Equilibrium be-

) ) ) . tween the two homogeneous statps,p§ is fixed by the
We consider first the effect of variable surface tensionjaxwell condition

As two interfaces approach one another, the overlap of the

tails of the density profile causes a decrease of interfacial _ paf(pd) = psf(ps)

energy, i.e., surface tension, which must vanish at zero sepa- Ho= ?

ration when the gas layer between the two liquid volumes s s

disappears altogether. Thus, the dependence of surface temhich defines, together withuy=g(p:), the equilibrium

sion on the separatioh can be expressed ag=yyx(h), chemical potentialg and both equilibrium densities.

where x(0)=0 and x()=1. We shall see that the particular ~ The equation for density distribution near a flat boundary

shape of this function affects only coefficients in the finalnormal to thex axis is obtained by assumingto be constant

expressions. in each lateral plane and integrating EG) in the lateral
Consistent computation of the dependen¢b) requires  directions. This yields the free energy per unit area, or sur-

application of diffuse interface theory in the vicinity of the face tension,

tip. The starting poin{8,17] is the free energy functional -

written in the density functional approximation as Y:J p()[f(p) - wldx

1

, 3

7= | sboptad o3| x| t@lotcr & -po0taz. (@

1 The interfacial energy is contributed both by deviations from
F(x) = f(p(x)) + —f Un)[px+r)-px)]d3, (1) the equilibrium density levels in the transitional region and
2) =4 by the distortion energy localized there. The 1D interaction
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Y0 1-—| - ath=d
0.4f 6\h '
0.3
' The respective sharp-interface approximation of the conjoin-
0.2} 45 6 ing potential is obtained by differentiating E(f) with re-
0.1} spect toh:
ot -
o 1 2 3 4 5 6 71 4 h ath=<d
n/a e -Gt ] 3 d e
FIG. 2. The dependence of the dimensionless conjoining poten- #= 1P ™ Ps Yo “dh | 1/d\3 h=d
tial o on separatiorh. The dots denote the results of 1D density 5 H ath=d.

functional computatiofil8] with a shift of h adjusted to fit Eq(8),

as shown by the solid line. Inset: the functigth), Eq. (7). The curveiu(h) expressing this dependence well fits the nu-

) ) . merical results obtained by solving H#)5) if the gap thick-
kernel Q(x) lumps intermolecular interaction between the ness is shifted by a certain valirg equal to~1.39 in this
layersx=const. It is computed by lateral integration, as de-particular computatiotiFig. 2).

scribed for the particular case of a van der Waals fluid in A shift is necessary because no Stationary solution can

Appendix A. _ ~ exist below a certain value df, as defined by Eq6), which
The respective 1D Euler-Lagrange equation, replacingorresponds to a critical size required for nucleation of a
Eq.(2), is critical 1D “bubble.” By applying this shift, we assume that

the nominal gap between sharp hydrodynamic interfaces is
- defined as the excess over this critical thickness. This fine
9(p(x) — p + f_m QUOLp(x+ &) - p(x)]de=0. (5 distinction does not affect the geometry of the flow in the
liquid domain, which is characterized by much larger length
A stationary solution of Eq(5) exists at a certain value of scales.
w shifted downward from the Maxwell construction leys), When the dependencg(h) obtained for two flat and
as shown by the dashed line in Fig. 1. The Spiftu—puois  parallel interfaces is applied to the cusped interface, geo-
the conjoining potentialexpressing the interaction of two metrical corrections are negligible. Indeed, close to the cusp
identical flat interfaces. tip [see Fig. 83)], the interface can be approximatedas
The problem is solved numerically by fixing some trial =y3/2 "12 \whereL is the characteristic length scale of the
value of u and solving Eq(5) iteratively to find a stationary outer flow. When the gamh(y)=2x(y)=0(d), the slope
profile p(x) at this value[18]. The computation results for a x’(y) e (y/L)Y2ec(d/L)Y3 is very small and the respective
van der Waals fluidsee Appendix A using Eq.(A6) with  correction to the surface tension can be neglected. Likewise,
=9 are shown by dots in Fig. 2. To facilitate comparisonthe curvature radius is estimated &s'=~1/x"(y) o« (yL)?
with sharp-interface hydrodynamic theory, the conjoininge| 23413 ¢, so that curvature corrections are negligible
potential is plotted against the nominal gap wititlefined  higher-order quantities. We shall further use the simple ex-
as pressiong7) and(8) bearing in mind that, provided the con-
dition ¥(0)=0 holds, the results are not significantly altered
by the detailed form of the dependence of surface tension on
separation.

1 * _
h=— _f (p — pg)dXx. (6)
Ps = PsJ—=

The interfacial thickness, which lies far from the criti-
cal point in the nanometer range, is negligible compared 1. HYDRODYNAMIC SOLUTION
to all relevant hydrodynamic lengths except the gap between ..
two interfaces near the cusp. The correspondence between leetn a (fjipzndgncg(h), t(?]ne an _?Eplﬁ tge dpowerful
the surface tension of a sharp liquid-gas interface dependeﬁ‘f)pa.ra us ol nydrodynamic _eo[y |. The hydro lynamic
on the gap width and the interfacial energy of a diffusesolutlon for the Stokes flow driven by a vortex dipole with

interface computed in the framework of density functionalthe strengthu, located at the poiny=-1 in the planez=x

theory as a function of the nominal gap thickness canJriy is found[10] by conformal transformatioa({) project-

be established through a sharp-interface approximation df9 the fegi‘”.‘ OCCUpi?d by the ViSCOlf'S liquid into the unjt
Eq. (4). circle =¢€'Y with the dipole source at its center. The appli-

Straightforward computation using E¢f) with the van  Cable transformation is

der Waals interaction kernéA4) and the respective function .
f(p), EqQ. (A2), gives the following dependence of surface z=a(l+i) +i(1+a)£ 9)
tension on the separatidn [+
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dependent on a single paramegerthe interface is concave
at a<0, and is non-self-intersecting at>-1/3. Both infi-
nitely removed points at the interface are projected onto the
point 6=-7/2. A cusp is formed at the poim:—gi (pro-
jected ontof=m/2) whena=-1/3[see Fig. &)].

The tangential velocity on the interface, parametrized by
the angled on the unit circle, igsee Appendix B for more
detail)

(a)

_ AU
a(2 +3a)?

1 F“ Y 9)dd
o |Z(@?)|(sin9-sing)

u(e‘”):—|z’(e‘”)cos¢9[

+ o } , (10

where the principal value of the singular integral should
be taken. Velocity should vanish at spatial infinity, i.e., at
0=-/2. This implies that the bracketed expression in Eg.
(10) should vanish, yielding the relation between the param- Yy
etera and the capillary number Caign/ v,

a(2 +3a)? (™2 9)dd
Casz ( )f , ig( ). _ (11)
87 —2 1Z(€V)|(sind+ 1) o
Yy
The integral in Eq.11) diverges ata=-1/3, y=1, but e e x

remains finite when the surface tension vanishe§=atr/2.
Using Eq.(7), the integral in Eq(11) is computed analyti-
cally by separating it into two parts, inner and outer, joined at
some angle}=m/2-0, whered<® <1. In the outer region
98>0, y is set to unity, yielding(at a=-1/3) C&"
=(16m)71In(8/0). In the inner regionY< O, the denomina-
tor is approximated alg’ (€/?)|(sin 9+ 1) =~ §/3. The compu-

tation yields a logarithmic divergence @t— o canceling 0.8 i
with the matching divergence of the outer integral upon sum- '\.\ !
mation: CH'=(167)"*In(q®), whereq is a number depen- 2T

dent on the chosen dependeng@y); q is finite, provided

— i = ut— -1
x(m/2)=0. The result is Ca=Ca Ce"=(16m) "In 8q. show the local directions of theandy axes in a coordinate system

Since the decrease of surface tens!on is felt onIy_ very CIOSgligned with the interfacgb) The interfacial shapes defined by Eg.
to the cusp, one can use the approximate expression for sep&o) with a=-1/3 (solid curve, a>-1/3 (dashed curve and

ration h:é(jrlz—ﬁ)? Using this together with Eq(7) to  a<-1/3 (dash-dotted curye
compute CH yields q=(e/6d)"/3, so that

FIG. 3. (a) The shape of the interface near the cusp. Arrows

0.25
Ca=Cd + CeV'= i(1+|n2—56). (12)
487 3d 0.225
We see that the cusp is indeed formed at a fiéted not 02
very largg Ca, e.g., Ca=0.158 atd=10"%; this value is in 80.175
fact lower than Ca in the solution witly=const with the tip
curvaturek=d™! (see Fig. 4, so that formal rounding up .15

of the cusp has no physical significance under these con- 4 155
ditions.

The interfacial velocity defined by E@10) is computed 0.1
in the same way, although care should be taken to apply
different approximations near and far from the cusp tip and
matching the results. Far from the tip, the solution is practi- F|G. 4. The dependence of the capillary number at the cusp
cally indistinguishable from a solution with=const and the  point on the molecular cutoff lengtth expressed in the outer flow
same value of Ca, but in the immediate vicinity of the tip theunits. The dashed line shows the capillary number for the hydrody-
behavior is qualitatively differentFig. 5): the stagnation namic solution with the tip curvature radids

-log[d]
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s, A —cf ’(x)dxfx polx') dé= (18)
m= o oade= .
-5.5 Lo o I'(po($)) A
-6
6.5 Here D*=T'(p%)g’ (p%) are the diffusivities in the liquid and
-7 gas phases\ is the effective mobility, ang, is assumed
5.8 negligible compared tp{. These relations should be used as
' boundary conditions at the interface matching far field solu-
. 4 tions in the liquid and gas phases.
“B:3 The derivation of Eqs(17) and(18) given in Appendix C
-9 follows the general scheme worked out in phase field theory

of phase transition§l9]. The reader can omit details of the
derivation, taking note that E@17) is just the mass conser-
vation condition for a moving interface, while E@18)

. ) o can be viewed, disregarding its middle part, as a linear rela-
point disappears, and the downward velocity is finite at thgjon petweenAu and ¢ with an adjustable proportionality

FIG. 5. The interfacial velocity near the cusp @108 and
d=107,

cusp tip. N constant\. This constant is in fact not independent but is
At higher values of Ca, the transfor@) can be modified  expressed through mobilities, but this formula is not very
then by including a cubic term: useful practically due to the lack of data on the dependence
[ ['(p). The upper estimate isAxI/(dpg)ecD*/(dT)
z=a(l+i)+b(Z+i)*+i(l+a- b)ﬁ' (13) =10?'sec mkg™, but this value may be depressed consid-

erably by an Arrhenius factor. It is also shown in Appendix C
A fifth-order singularity attained a@=8/19,b=1/95corre-  that Eq. (18) should be corrected when the mobility
sponds to a still deeper and narrower tip formed at higheptrongly depends on density.
values of Ca. This can be continued by adding higher-order The Galilean invariant extension of EE.6) is
terms and pushing the interfacial singularity still closer to the
vortex dipole. All this is, however, a mere formal exercise, as ap+V-(vp)=-V-[T(p) V ul. (19)
the gap width drops near higher-order singularities well be-

low molecular scale. It is more likely that the value of CaThjs is a material balance equation, which reduces to the
corresponding t@=-1/3 can be identified with the limit of  ontinuity equation outside thin interfacial layers. A concep-

air entrainment. Transverse instability of the air sheet shoulg, 5| gifficulty arises, however, since E€L9) contains both

be facilitated near this limit by conjoining interaction of the gifrysional and advective fluxes, which cannot be separated

two interfaces. in a unique way in a one-component fluid. In the case under
study, this separation is natural, since the flow is determined
IV. INTERPHASE TRANSPORT by the macroscopic solution obtained in Sec. Ill, while the

diffusional transport is minute and its contribution to the mo-

After establishing that the flow velocity is finite near the : -
tp, we can shitt atention to gas flow and vapor-iquid equi- g =i TECE E TERE 8 TS TR AT
librium in the narrow gap. Relaxation of density toward ing with the velocity determined by the available hydrody-
equilibrium is constrained by the mass conservation law nagmic solution y y y y

dp=-V-j. (14) In the outer(bulk) regions the distortion term in Eg@5)
. I ) can be neglected, and the density closely approaches one of
If deviations from equilibrium are weak, the flyxcan be  q giternative equilibria?, while deviation of the chemical
assumed to be proportional to the gradient of the Chem'cagfotential w from the Maxwell construction can be approxi-
potential: mated asu—us=9’ (pt)(p—p%). Thus, Eq.(16) reduces to a
i=-T(p) V p, (15 linear convective-diffusion equation

wherel is a mobility coefficient, generally dependent pn i v, — U2t
This formulation ensures a monotonic approach to equilib- ap”+V- (vp) = DIVp". (20)
rium. Equations(14) and (15) combine to the generalized The potential difference driving the interphase transport is

Cahn-Hilliard equation Au=9g(p;)—m (see Fig. }, wherey is the shift of equilib-
_ rium chemical potential in a narrow gap estimated by Eq.
dp=V-[L(p) V ul. (16) (8). This reduces the interphase transport problem to solving

Relations between the condensation flyxnormal dis- the far field convective diffusion equations in both phases
placement velocity of the interfaag and drop of chemical using Egqs(17) and(18) as matching conditions. The prob-
potential across the interfadgu can be obtained by solving lem is additionally simplified in our case, since the limiting

Egs.(5) and(16) in the thin interface approximation: stage largely determining the shift of chemical potential is
o, 0 - a0+ removal of an inert componedir) advected into the narrow
] = psc=D"dpps — D dnps, (17 cusp interstice.
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V. TRANSPORT IN GAS AND LIQUID PHASES effect similar to that envisaged by Shikhmurzdé&®).

In the gas phase within the cusp, density changes in the
transverse direction can be neglected, and the applicable

equation for the vapor density is The contest between a true cusp singularity and a stagna-
- N T tion point is resolved by mesoscopic theory including mo-
D oo™~ uhp") = 2)(y) =0, (2Y) lecular interactions in favor of the cusp, since the velocity at
wherej(y) is the local condensation flux at each of the sym-the tip computed in Sec. Il remains finite, although the dis-
metric interfaces, and is the interfacial velocity given by tinction of shapes is blurred due to the diffuse character of
the above hydrodynamic solution, which is almost constanthe interface. The theory presented here does not overlap
at relevant distances from the cusp tip. The transport of thavith that of Eggers[12] operating on much larger scales.
inert component is governed by a similar equation, but withAlthough condensation does relieve the air pressure through
a vanishing total flux. Assuming the gas presspréo be  diffusion, it becomes significant only at mesoscopic dis-
constantwhich is justified by the absence of transverse gratances from the tip, and viscous pressure may accumulate at
dients and negligible interfacial curvature in the cyspe larger scales causing entrainment of macroscopic bubbles.
have The latter problem still remains unresolved, since the depen-
o _ dence of the critical capillary number of air entrainment on
D dyp” +u(piT-p7) =0, (22) the viscosity ratio detected experimentall®0] is much
whereT is temperature. This can be used back in @q) to ~ Weaker than that predicted theoreticglhy?]. An experimen-
compute the condensation fljigy)=—(up/2T)h’(y). On the tal test of thg role of pondensatic(racting as allast-di.tch
other hand, it follows from the material balance for the twodefense against entrainmgnwould require testing fluids

VI. CONCLUSIONS

interfaces on the sides of the cusp that with different volatilities as well as viscosities.
_ In a more general context, the principal message of this
3\*2upyh communication is the importance of interphase transport and

—cpg=j(y) = —%.)h'(y) = (-)

2 oT (23) flow induced by molecular interactions in the vicinity of in-

terfacial singularities. This may be relevant in various situa-
Using Eqgs(18) and(23) can estimate the gap width at which tions involving close approach of surfaces, such as coales-
the interaction of the interfaces becomes sufficient to driveeence failure, dewetting, or spreading. A specific
this condensation flux. Since the flux is minute, this distancgyhenomenon, which, to this author’s knowledge, has never
turns out to be much larger than the molecular scale. Theeen described before, is a kind of Marangoni flow induced

estimate is given by by the proximity of interfaces, rather than by composition of
2w - temperature changes. Both Marangoni flow and interphase

(9) ~ &M, (24)  transport are identified in the sharp-interface limit of the dif-
h ps AT fuse interface theory that connects interactions on the mo-

yielding a gap width about I0 m. The corresponding length lecular scale to macroscopic hydrodynamic theory.

of the condensation zone from which air should be removed
by diffusion is in a rather macroscopic range of tens of mi-
crometers. The total condensation flux obtained by integrat- This research has been supported by Israel Science Foun-
ing Eq.(23) over this length is about 1dm?sec™. Thisis  dation(Grant No. 55/02
quite minute on a macroscopic scale, as the effective conden-
sation velocityc obtained by dividing the above value py APPENDIX A: DENSITY FUNCTIONAL THEORY
is about 102 m/sec, and should not affect significantly the FOR A VAN DER WAALS FLUID
shape of the cusp.

In the liquid phase, one has to solve the convective diffu- This appendix presents a simple example of derivation of
sion equation a particular form of the functiorf(p) and 1D interaction
kernelQ(x) using the modified Lennard-Jones potential with

ACKNOWLEDGMENT

+v2 + + —
D'V -u-Vp =0. (25 hard-core repulsion
Near the cusp, the flow velocity can be assumed to be ~ArS (r>d)
constant and directed down tlgeaxis (parallel to the cusp U= ' (A1)
Small deviations from equilibrium liquid density are caused ©  (r<d),

by the lowering of chemical potential, as seen in Fig. 1. Thgyhered is the nominal hard-core molecular diameter. Using

solution far downstream is this interaction kernel, the free energy per particle of a ho-
B Au p( uy) ( uy) c uy |22 mogeneous van der Waals fluid is computed as
too —— — — = — —
"(pt 2D/ \2D/)  \g'(p! <2D>
9'(pd) 9'(ps) f(p,T) =TIn —2— —ap, (A2)
(26) 1-bp

Although the source of density depletion is very weak, itwhereT is the temperaturéngrrd?’ is the excluded volume,
decays extremely slowly downstream, creating a relaxatiomnd
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* 27A =-2 , ==2 , = =2 .
__ wa u(nr 24y = Ay (A3) 011 77<;/’yy 022 N O12= 01 77<;/’xy
g 3d (B3)

The 1D interaction kerneQ(x) is computed using as an The kinematic boundary condition in E@B2) reduces to/
integration variable the squared distagge?=£2+x?, where ~ =const=0, while the normal and tangential stress boundary
& is the radial distance in the lateral plane. Taking note thagonditions are expressed in termsdbfas
the lower integration limit forg is go=x? at |x| > d, gp=d? at
Ix|<d, we compute $=0, n-V¢=1/27). (B4)

In the complex representation, the flow is characterized

1 i = b+i ihar-
CZaAXt at N> d, by the complex potential(z,z)=¢+iy. A general bihar

* 3 monic function is expressed using the Goursat representation
Qx)=-mA| q~dq= asw=w+2w;, wherew,,w; are harmonic functions of the
do - EWAd—4 at |x| <d. complex variable=x+iy; the over bar denotes the complex

conjugate. The two functionag,w; completely specify the
(A4) flow field [21]

The dimensionless form of E@5) obtained by plugging U= Uy +ily=Wh(2) + 2Wi(2) - Wy(2). (B5)
in there Eqs(A2) and(A4) is
The kinematic and normal stress boundary conditions reduce
3 (* . to a single complex condition
9p)—p* B f Q(&Lp(x+ &) = p(x)]dé=0, (AS5) _
- Wo(2) +2wy(2) = 0. (B6)

. The tangential stress boundary condition becomes
=1In (— - 1) 2B8p(X). (AB)
p(X)

g(p) = y

Im[wl(z)j—j :EI, (B7)

1-p(x)

Here the length is scaled by the nominal molecular cutoff
diameterd, the density byo™%, and the chemical potential by Wheresis the arclength or'. _ _

. . A Following the conformal transformatiazi{) mapping the
temperatureT the interaction kernel iQ(x)=-x" atx>1, interface on the unit circléZ|=1, the boundary condition
Q(x)=-1 atx< 1, and the only remaining dimensionless pa-(B6), yields the relation between the two unknown functions

rameter is the rescaled inverse temperaggra/(bT). Wi (0)=wi(z(9)), k=0, 1:
Wo(Q) = - Z()Wy(Honl = 1. (B8)
APPENDIX B: COMPLEX REPRESENTATION
OF THE FLOW FIELD Using the relation valid on the unit circle,
This appendix outlines the solution of the hydrodynamic dz i Z'() _|dz -1 59
free surface problem via conformal transformatid®]. A é*V|Z (§)| ds| (B9)

stationary flow fieldu(x,y) of a viscous incompressible lig- o N
uid and a pressure field satisfy the Stokes and continuity the remaining boundary conditiqi7) reduces to the equa-
equations tion for W;(9):

Vp=7V, V-u=0. (B1) R Wl(g)]:— A B10
7 Z(@0] " 49z (B10

The dependence on the dipole strength is established through
the asymptotics at— 0:

A 2D flow field u(x,y)=(uy,Up)=(sk,—) is defined
through the stream functior(x,y) solving the biharmonic
equation V44=0. We consider a semi-infinite domain

bounded by a liquid-gas interfadé, the gas phase is as- Uo iug
sumed to be inviscid. The boundary conditionsloare Wo(Q) = Wiy(g) o= ———. (B11)
é Z(0)’ az(0)
u-n=0, n-o-n=1yxk, The solution is found by using analytic continuation of

the condition(B10) away from the unit circle and computing
W, with the help of the Poisson formula. In order to cancel

(I=nn)-o-n=Vy, (B2)  the singularity at the origin, EqB10) is modified to
wheren is the normal to the interface, | is the unity tenspr, W;(2) Wl(O ’
is the surface tension, andis the interfacial curvature. The 720 (0)( -0 = 77|Zr(§)|' (B12)
elementso;; of the stress tensar can be defined through an
Airy stress functiong(x,y) satisfyingp=7V2¢: The Poisson formula yields then
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(7' (0) (£+ 0)dé The solutions of the inner and outer equations should be
_ 2y _ Y ) h )
Wiy(¢) = mwl(o)(l -{)- 8 2= 0 matched at a distance from the front that is large on the inner
7 but small on the outer scale; the result must be independent
(B13)  of a precise matching position within this range. The match-

The expressiori10) for the tangential velocity on the inter- N9 conditions are

Z'({)

face is obtained from this general expression using E3s. lim wl(x) = (92#1’ (C4)
(B5), (B8), and(B11). X0
where g, is the derivative along the normal (directed, by
APPENDIX C: COMPUTATION convention, in the same way as tReaxis) and the super-
OF THE CONDENSATION FLUX script 0 indicates the inner limit of the outer solution com-

puted near the interface.
The characteristic width of a diffuse interface is of the |ntegrating Eq(C3) and using Eq(C4) yields

same order of magnitude as the molecular cutoff lerdjth . 0 s o e
and increases to largémesoscopicdistances only close to c(p"=p)==T(p)dpu" +T(p)dpu” =] =j . (CH

thg critical point. Across this thin layer, the fluid den§ity The right-hand side of EqC5) is the difference of the fluxes
switches between the two alternative values corresponding {9, 16 o sides: thus, this condition defines the speed of the
the same constant value of chemical potential. The lattef, 5| interface displacement required to ensure the mass con-
serves as a bias parameter that shlfts.t.he. equmbrlqm In favale yation. Since the variable part pf is restricted in the
of one of the phases. Under nonequilibrium conditions, thqnterfacial layer toO(e), the valuesp® of the density in the

chemical potential varies on a longer scal¢hat is be de- ; ; ; -

. .matching regions may deviate from the equilibrium values
termined by the geometry of the system. Problems of this + e _ o+ o .
kind, containing a small parameterd/L, should be solved Ps(us), salistying us=g(ps) by no more tharO(e). Using

by matching expansions iain regions characterized by two again a linearization df(p), the mass conservation condition

widely separated scales: tivener region localized at the in- (C5) can be rewritten as

terface, and theuter region spreading out to the bulk of D:dlp - D ot

both alternative phases. This approach is suitable to track = 3 -

slow motion of the interphase boundary at times far exceed- Ps ™ Ps

ing the characteristic relaxation time to a stationary profile ofwhich reduces to Eq17) when ps=ps is neglected.

the order parameter in the interfacial layer. It remains to determine the first-order correction to the
In the inner region, the characteristic scale along the axisnterfacial chemical potential and the related values of den-

x normal to the nominal front position is the short scdle  sity p* at the matching locations on both sides of the inter-

while the coordinatg parallel to the interface is scaled by face. For this purpose, E¢C3) is integrated twice to yield

Inasmuch as the interfacial layer is assumed to be locally .

close to equilibrium, the interface is expected to move under (X) = 1, + Ji~ CPo(X)d

the influence of long-scale changes of the chemical potential. HIX = 4 o T(pg(x)) %

Therefore the propagation speed should be measurable ona

long scale, so that the “Péclet number” R&#D based on Whereu,=u,(0) andj; are integration constants. The latter

the long length scale and a typical value of the diffusivity equals the flux through the interface, which is determined by

should be at most o®(1). In accordance with this scaling, the matching condition&C4) yielding two equivalent expres-

we express the propagation speec@sRetaining the terms  sions

up to the first order, we rewrite E@L6) as

(Co)

(C7

P= +\ 0 i+ i: i_-i:j+p;_j_p;
4T (o)’ (%] + ecp'(X) =0, ) =MW epm=ep =P ==
This equation is solved together with E). The flux j, vanishes for a single interface viewed in the
The solution of the inner equations is sought for as an-omoving frame.
expansion Ine: The first-order expansion of E¢p),
p=poteprt . u=pot eyt (C2

In the zero order, Eq(C1) reduces touj(x)=0, while the 9'(polpr~ f_w QOLpa(x+ 8 = p1(3)1de=0,

zero order density profilgy(x) is a stationary front verifying (C9)
Eq. (5) that exists wherny, is the equilibrium chemical po-

tential defined by Eq(3). Formally, one could still add tp,  is a linear inhomogeneous equation of a general fétm

a linear term, but this would be incompatible with matching+¥ =0 with an integral linear operatét and an inhomoge-
conditions when propagation is slow. Thus, the variable parheity ¥ =-u,. By the Fredholm alternative, the solvability

of u is restricted in the interfacial layer ©O(e). condition of this equation is orthogonality &f to the neu-
In the first order, Eq(C1) reduces to trally stable eigenmode of{. The latter is determined by
, , translational symmetry of the system and coincides with the
Al I'(po) 1 (X)] + Cpo(x) = 0. (€3 derivativepy(x). Using Eq.(C7) yields
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ﬁl(P;_P;):_jljo"'le; (C10
— ” ' X pO(g) f pO 5)[!35 P(f)]
5= PO(X)O'XJ Teo® )y Ty ¢
0 k -
po(&)Lp(é) = psl .
- ———————dé= -Jk. C11
| Py o T (c
The limit of the inner solutiofC7) at x— oo is
lim u3(X) = pg + €T 5 = [ *K* +xdp*, (C12

X—too

where we have used E@C8) and separated the converging

integrals.7 5, defined by Eq(C11), and

£ 1 1
Ki=| | =——-——1d c13
Jo [F(PO(X)) r<p§>} x (19

PHYSICAL REVIEW E 70, 051604(2004

normaln, which is small when measured on the outer scale,
is presented by expanding the outer solution in Taylor series
as

W=+ xdlut (C19

The last terms in EqQ9C12 and(C14) match, and the re-
maining constant terms yield two matching conditions for
computingu®:
W = s =y + CT § = JECE (C15
The difference between the two values is
Ap=p" = =T o= T o= pK'+pK) +ja(KF - K,
(Cloe

where we have used E@C8). Equation(18) is a simpli-
fied version of this expression neglecting the integréafs

On the other hand, the chemical potential in the outemhich are significant when the mobility strongly depends
regions close to the interface, i.e., at some distance along than density.
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