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Cusp singularity on a free surface of a viscous fluid driven by a vortex dipole is resolved through nanoscale
molecular interactions. The cusp is formed at finite capillary number due to a decrease of surface tension
caused by conjoining interaction near the cusp. The related effects of cusp geometry are weak Marangoni flow,
vapor condensation, and a slight decrease of liquid density near the cusp creating a depletion tail downstream.
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I. INTRODUCTION

Classical hydrodynamics is plagued by stress singularities
linked to singularities of free surfaces. These singularities
can be resolved only by modifying boundary conditions, ei-
ther phenomenologically or through physical insight, e.g., by
taking into account molecular interactions near the inter-
faces. A notorious example is flow near a three-phase contact
line [1,2], where the physical models suggested to resolve
the singularity range from activated flow in a first molecular
layer [3,4] through interfacial relaxation[5] to diffuse inter-
face theory[6–8].

A simpler but less known example is a cusp singularity
on a free surface observed in flow induced by a vortex dipole
[9]. An elegant two-dimensional(2D) solution based on
conformal transformation was given by Jeong and Moffatt
[10] and further extended tothe case of variable surface ten-
sion by Antanovskii[11]. It was found that a cusp singularity
appears at Ca→`, where Ca=u0h /g0 is the capillary num-
ber based on the characteristic flow velocityu0 (related to
the dipole strength), dynamic viscosityh, and standard sur-
face tensiong0 of a flat quiescent interface. The stress be-
comes singular at the cusp tip. The singularity appearing
asymptotically at vanishing surface tension would not be
troublesome from the physical point of view, but for the
extraordinary way it is approached. Although the curvature at
the tip remains formally finite at any finite Ca, the curvature
radiusk−1= 256

3 exps−32pCad goes below molecular scale al-
ready at Ca=Os10−1d. Moreover, the cusp may appear al-
ready at finite Ca when surface tension vanishes at the cusp
tip [11].

It must be noted that the formation of a cusp singularity
is not a mere mathematical quirk, since it leads to a qualita-
tive and physically significant change in flow pattern: a
stagnation line on the free surface disappears, and free
surface streamlines proceeddirectly into the fluid interior.
Jeong and Moffatt[10] dismiss the question of what “really
happens” near the tip as “philosophical,” but it is indeed a
physical question dependent on weak corrections to hydro-
dynamic theory, which become important only close to the
singularity.

The additional factors coming into play near the singular-
ity might be of either physical or hydrodynamic nature. The
most straightforward correction remaining within hydrody-

namic theory is taking into account finite viscosity of the gas
phase treated by the original theory as inviscid, i.e., ignored
altogether. Eggers[12] has resolved the interface profile
numerically for small but finite viscosity ratios, and showed
that the tip breaks, leading to air entrainment, way before
approaching the cusped form or thinning to molecular di-
mensions.

A different path was taken earlier by Shikhmurzaev[13],
who suggested resolving this singularity(as well as that at
the contact line) by introducing in a phenomenological
manner an interfacial layer treated as a separate phase. Ad-
vection of this layer along the interface causes changes of
surface tension dependent nonlocally on the flow pattern and
feeding back upon the flow through an analog of the Ma-
rangoni effect.

This paper continues the trend toward resolving a hydro-
dynamic singularity by introducing a more refined physical
model on shorter scales. An interfacial layer of a finite
(nanoscale) thickness appears in a natural way in diffuse
interface theory going back to van der Waals[14]. The ad-
vantage of this theory is in a possibility to directly relate
short-scale modifications of hydrodynamic theory to molecu-
lar interactions. The problem in question, where, unlike the
contact line problem, a precise hydrodynamic solution exists,
is a good testing ground for a more general challenge of
resolving hydrodynamic singularities through molecular in-
teractions.

Coupling diffuse interface theory to hydrodynamics in-
volves modification of macroscopic hydrodynamic equations
by including thermodynamic driving forces arising in a non-
equilibrium fluid. This theory is essentially mesoscopic, and
assumes linear coupling between fluxes and thermodynamic
forces in the spirit of Onsager’s nonequilibrium thermo-
dynamics. Local mesoscopic hydrodynamic theory[15]
modifies hydrodynamic equations by including in the stress
balance a reversible part of the stress tensor, called the
capillary tensor, which is derived from an applicable free
energy functional. This theory fails, however, to incorporate
kinetic retardation of interphase transport, as the only dissi-
pation mechanism explicitly included in this theory is viscos-
ity. Relaxation to the equilibrium density distribution in
thin interfacial layers might be described, in the spirit of
Cahn-Hilliard theory[16], by including diffusional fluxes
driven by gradients of chemical potential. This, however,
brings about conceptual difficulties, since diffusional and ad-
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vective fluxes cannot be separated in a unique way in a one-
component fluid.

The formidable task of formulating and solving coupled
kinetic and hydrodynamic equations is relieved by a great
disparity of scales. This allows one to separate the inner
interfacial region where macroscopic flow velocity is con-
stant and the interface is close to equilibrium, and the outer
region where flow is incompressible, while weak gradients of
chemical potential are relaxed by diffusion. Macroscopic
flow driven by external sources will remain unaffected by
gradients of chemical potential almost everywhere. Never-
theless, coupling to the inner region influences the flow
through boundary conditions sensitive to changes of surface
tension and interphase transport. The corrections, even
minute, may become essential when the classical hydrody-
namic solution is singular.

The peculiarity of the cusp is a drastically increasing as-
pect ratio at close approach to the tip; as a result, its width
falls into the nanoscale range already at mesoscopic dis-
tances from the tip. This brings about several physical ef-
fects, which we shall consider in turn. First, the conjoining
interaction of two interfaces at close approach changes the
surface tension, which withers gradually to zero at the tip, as
discussed in Sec. II. The hydrodynamic solution with vari-
able surface tension is obtained using the conformal transfor-
mation technique[10,11] in Sec. III. In Sec. IV we turn at-
tention to mass transport facilitated by shifts in equilibrium
chemical potential, bringing about vapor condensation. This,
in turn, facilitates removal of a neutral component(air) from
the narrow gap by diffusion, thereby eliminating backflow
and preventing pressure buildup in the narrow gap, as dis-
cussed in Sec. V. Diffusion on the background of the macro-
scopic flow manifests itself only in a weak density depletion
downstream from the cusp tip.

II. SURFACE TENSION AND CONJOINING POTENTIAL

We consider first the effect of variable surface tension.
As two interfaces approach one another, the overlap of the
tails of the density profile causes a decrease of interfacial
energy, i.e., surface tension, which must vanish at zero sepa-
ration when the gas layer between the two liquid volumes
disappears altogether. Thus, the dependence of surface ten-
sion on the separationh can be expressed asg=g0xshd,
wherexs0d=0 andxs`d=1. We shall see that the particular
shape of this function affects only coefficients in the final
expressions.

Consistent computation of the dependencexshd requires
application of diffuse interface theory in the vicinity of the
tip. The starting point[8,17] is the free energy functional
written in the density functional approximation as

F =E rsxdFsxdd3x,

Fsxd = f„rsxd… +
1

2
E

r.d

Usrdfrsx + r d − rsxdgd3r , s1d

where fsrd is free energy per particle of a homogeneous
fluid and Usrd is an isotropic pair interaction kernel with a
short-scale cutoffd. The chemical potentialm=dF /dr
enters the respective Euler-Lagrange equation obtained by
minimizing the grand ensemble thermodynamic potential
F=F−mer d3x, which defines the equilibrium density dis-
tribution rsxd:

gsrd − m +E
r.d

Usrdfrsx + r d − rsxdgd3r = 0, s2d

where gsrd=dfrfsrdg /dr. The function rffsrd−mg should
have two minimars

± corresponding to two stable uniform
equilibrium states of higher and lower density(liquid and
vapor).

A typical functiongsrd defining the dependencemsrd for
a homogeneous fluid is shown in Fig. 1. Equilibrium be-
tween the two homogeneous states,r=rs

± is fixed by the
Maxwell condition

m0 =
rs

+fsrs
+d − rs

−fsrs
−d

rs
+ − rs

− , s3d

which defines, together withm0=gsrs
±d, the equilibrium

chemical potentialm0 and both equilibrium densities.
The equation for density distribution near a flat boundary

normal to thex axis is obtained by assumingr to be constant
in each lateral plane and integrating Eq.(1) in the lateral
directions. This yields the free energy per unit area, or sur-
face tension,

g =E
−`

`

rsxdffsrd − mgdx

+
1

2
E

−`

`

rsxddxE
−`

`

Qsjdfrsx + jd − rsxdgdj. s4d

The interfacial energy is contributed both by deviations from
the equilibrium density levels in the transitional region and
by the distortion energy localized there. The 1D interaction

FIG. 1. The equilibrium curvem=gsrd computed using Eq.(A6)
with b=9. The value of the chemical potential at Maxwell construc-
tion m0 is taken as the zero level. The shift of chemical potential
due to proximity of the interfacesm̃ and the dynamic shiftDm near
the cusp are indicated by dashed lines. The dotted line indicates the
liquid density depletion.
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kernel Qsxd lumps intermolecular interaction between the
layersx=const. It is computed by lateral integration, as de-
scribed for the particular case of a van der Waals fluid in
Appendix A.

The respective 1D Euler-Lagrange equation, replacing
Eq. (2), is

g„rsxd… − m +E
−`

`

Qsjdfrsx + jd − rsxdgdj = 0. s5d

A stationary solution of Eq.(5) exists at a certain value of
m shifted downward from the Maxwell construction levelm0,
as shown by the dashed line in Fig. 1. The shiftm̃=m−m0 is
the conjoining potentialexpressing the interaction of two
identical flat interfaces.

The problem is solved numerically by fixing some trial
value ofm and solving Eq.(5) iteratively to find a stationary
profile rsxd at this value[18]. The computation results for a
van der Waals fluid(see Appendix A) using Eq.(A6) with
b=9 are shown by dots in Fig. 2. To facilitate comparison
with sharp-interface hydrodynamic theory, the conjoining
potential is plotted against the nominal gap widthh defined
as

h =
1

rs
+ − rs

−E
−`

`

sr − rs
−ddx. s6d

The interfacial thickness, which lies far from the criti-
cal point in the nanometer range, is negligible compared
to all relevant hydrodynamic lengths except the gap between
two interfaces near the cusp. The correspondence between
the surface tension of a sharp liquid-gas interface dependent
on the gap width and the interfacial energy of a diffuse
interface computed in the framework of density functional
theory as a function of the nominal gap thickness can
be established through a sharp-interface approximation of
Eq. (4).

Straightforward computation using Eq.(4) with the van
der Waals interaction kernel(A4) and the respective function
fsrd, Eq. (A2), gives the following dependence of surface
tension on the separationh:

x =
g

g0
=5

4

3

h

d
−

1

2
Sh

d
D2

at h ø d,

1 −
1

6
Sd

h
D2

at h ù d.6 s7d

The respective sharp-interface approximation of the conjoin-
ing potential is obtained by differentiating Eq.(7) with re-
spect toh:

m̂ = m̃srs
+ − rs

−d
d

g0
=

dx

dh
=5

4

3
−

h

d
at h ø d,

1

3
Sd

h
D3

at h ù d.6 s8d

The curvem̂shd expressing this dependence well fits the nu-
merical results obtained by solving Eq.(A5) if the gap thick-
ness is shifted by a certain valueh0 equal to<1.39 in this
particular computation(Fig. 2).

A shift is necessary because no stationary solution can
exist below a certain value ofh, as defined by Eq.(6), which
corresponds to a critical size required for nucleation of a
critical 1D “bubble.” By applying this shift, we assume that
the nominal gap between sharp hydrodynamic interfaces is
defined as the excess over this critical thickness. This fine
distinction does not affect the geometry of the flow in the
liquid domain, which is characterized by much larger length
scales.

When the dependencexshd obtained for two flat and
parallel interfaces is applied to the cusped interface, geo-
metrical corrections are negligible. Indeed, close to the cusp
tip [see Fig. 3(a)], the interface can be approximated asx
=y3/2L−1/2, whereL is the characteristic length scale of the
outer flow. When the gaphsyd=2xsyd=Osdd, the slope
x8syd~ sy/Ld1/2~ sd/Ld1/3 is very small and the respective
correction to the surface tension can be neglected. Likewise,
the curvature radius is estimated ask−1<1/x9syd~ syLd1/2

~L2/3d1/3@d, so that curvature corrections are negligible
higher-order quantities. We shall further use the simple ex-
pressions(7) and(8) bearing in mind that, provided the con-
dition gs0d=0 holds, the results are not significantly altered
by the detailed form of the dependence of surface tension on
separation.

III. HYDRODYNAMIC SOLUTION

Given a dependencexshd, one can apply the powerful
apparatus of hydrodynamic theory[10]. The hydrodynamic
solution for the Stokes flow driven by a vortex dipole with
the strengthu0 located at the pointy=−1 in the planez=x
+ iy is found [10] by conformal transformationzszd project-
ing the region occupied by the viscous liquid into the unit
circle z=eiu with the dipole source at its center. The appli-
cable transformation is

z= asz + id + is1 + ad
z − i

z + i
, s9d

FIG. 2. The dependence of the dimensionless conjoining poten-
tial m̂ on separationh. The dots denote the results of 1D density
functional computation[18] with a shift ofh adjusted to fit Eq.(8),
as shown by the solid line. Inset: the functionxshd, Eq. (7).
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dependent on a single parametera; the interface is concave
at a,0, and is non-self-intersecting ata.−1/3. Both infi-
nitely removed points at the interface are projected onto the
point u=−p /2. A cusp is formed at the pointz=−2

3i (pro-
jected ontou=p /2) whena=−1/3 [see Fig. 3(b)].

The tangential velocity on the interface, parametrized by
the angleu on the unit circle, is(see Appendix B for more
detail)

useiud = − uz8seiuducosuF 4u0

as2 + 3ad2

+
1

4ph
E

0

2p gsqddq

uz8seiqdussinq − sinudG , s10d

where the principal value of the singular integral should
be taken. Velocity should vanish at spatial infinity, i.e., at
u=−p /2. This implies that the bracketed expression in Eq.
(10) should vanish, yielding the relation between the param-
etera and the capillary number Ca=u0h /g0

Ca =
as2 + 3ad2

8p
E

−p/2

p/2 xsqddq

uz8seiqdussinq + 1d
. s11d

The integral in Eq.(11) diverges ata=−1/3, x=1, but
remains finite when the surface tension vanishes atq=p /2.
Using Eq.(7), the integral in Eq.(11) is computed analyti-
cally by separating it into two parts, inner and outer, joined at
some angleq=p /2−Q, whered!Q!1. In the outer region
q.Q, x is set to unity, yielding (at a=−1/3) Caout

=s16pd−1 lns8/Qd. In the inner regionq,Q, the denomina-
tor is approximated asuz8seiqdussinq+1d<q /3. The compu-
tation yields a logarithmic divergence atQ→` canceling
with the matching divergence of the outer integral upon sum-
mation: Cain=s16pd−1 lnsqQd, whereq is a number depen-
dent on the chosen dependencexsqd; q is finite, provided
xsp /2d=0. The result is Ca=Cain+Caout=s16pd−1 ln 8q.
Since the decrease of surface tension is felt only very close
to the cusp, one can use the approximate expression for sepa-
ration h= 1

6sp /2−qd3. Using this together with Eq.(7) to
compute Cain yields q=se/6dd1/3, so that

Ca = Cain + Caout =
1

48p
S1 + ln

256

3d
D . s12d

We see that the cusp is indeed formed at a finite(and not
very large) Ca, e.g., Ca<0.158 atd=10−8; this value is in
fact lower than Ca in the solution withg=const with the tip
curvaturek=d−1 (see Fig. 4), so that formal rounding up
of the cusp has no physical significance under these con-
ditions.

The interfacial velocity defined by Eq.(10) is computed
in the same way, although care should be taken to apply
different approximations near and far from the cusp tip and
matching the results. Far from the tip, the solution is practi-
cally indistinguishable from a solution withg=const and the
same value of Ca, but in the immediate vicinity of the tip the
behavior is qualitatively different(Fig. 5): the stagnation

FIG. 3. (a) The shape of the interface near the cusp. Arrows
show the local directions of thex andy axes in a coordinate system
aligned with the interface.(b) The interfacial shapes defined by Eq.
(10) with a=−1/3 (solid curve), a.−1/3 (dashed curve), and
a,−1/3 (dash-dotted curve).

FIG. 4. The dependence of the capillary number at the cusp
point on the molecular cutoff lengthd expressed in the outer flow
units. The dashed line shows the capillary number for the hydrody-
namic solution with the tip curvature radiusd.
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point disappears, and the downward velocity is finite at the
cusp tip.

At higher values of Ca, the transform(9) can be modified
then by including a cubic term:

z= asz + id + bsz + id3 + is1 + a − bd
z − i

z + i
. s13d

A fifth-order singularity attained ata=8/19,b=1/95 corre-
sponds to a still deeper and narrower tip formed at higher
values of Ca. This can be continued by adding higher-order
terms and pushing the interfacial singularity still closer to the
vortex dipole. All this is, however, a mere formal exercise, as
the gap width drops near higher-order singularities well be-
low molecular scale. It is more likely that the value of Ca
corresponding toa=−1/3 can be identified with the limit of
air entrainment. Transverse instability of the air sheet should
be facilitated near this limit by conjoining interaction of the
two interfaces.

IV. INTERPHASE TRANSPORT

After establishing that the flow velocity is finite near the
tip, we can shift attention to gas flow and vapor-liquid equi-
librium in the narrow gap. Relaxation of density toward
equilibrium is constrained by the mass conservation law

]tr = − =· j . s14d

If deviations from equilibrium are weak, the fluxj can be
assumed to be proportional to the gradient of the chemical
potential:

j = − Gsrd = m, s15d

whereG is a mobility coefficient, generally dependent onr.
This formulation ensures a monotonic approach to equilib-
rium. Equations(14) and (15) combine to the generalized
Cahn-Hilliard equation

]tr = =· fGsrd = mg. s16d

Relations between the condensation fluxj , normal dis-
placement velocity of the interfacec, and drop of chemical
potential across the interfaceDm can be obtained by solving
Eqs.(5) and (16) in the thin interface approximation:

j = rs
+c = D−]n

0rs
− − D+]n

0rs
+, s17d

Dm = cE
−`

`

r08sxddxE
0

x r0sx8d
G„r0sjd…

dj ;
c

l
. s18d

Here D±=Gsrs
±dg8srs

±d are the diffusivities in the liquid and
gas phases,l is the effective mobility, andrs

− is assumed
negligible compared tors

+. These relations should be used as
boundary conditions at the interface matching far field solu-
tions in the liquid and gas phases.

The derivation of Eqs.(17) and(18) given in Appendix C
follows the general scheme worked out in phase field theory
of phase transitions[19]. The reader can omit details of the
derivation, taking note that Eq.(17) is just the mass conser-
vation condition for a moving interface, while Eq.(18)
can be viewed, disregarding its middle part, as a linear rela-
tion betweenDm and c with an adjustable proportionality
constantl. This constant is in fact not independent but is
expressed through mobilities, but this formula is not very
useful practically due to the lack of data on the dependence
Gsrd. The upper estimate isl~Gl / sdrs

+d~D+/ sdTd
<1021 sec m−1 kg−1, but this value may be depressed consid-
erably by an Arrhenius factor. It is also shown in Appendix C
that Eq. (18) should be corrected when the mobilityG
strongly depends on density.

The Galilean invariant extension of Eq.(16) is

]tr +=· svrd = −=· fGsrd = mg. s19d

This is a material balance equation, which reduces to the
continuity equation outside thin interfacial layers. A concep-
tual difficulty arises, however, since Eq.(19) contains both
diffusional and advective fluxes, which cannot be separated
in a unique way in a one-component fluid. In the case under
study, this separation is natural, since the flow is determined
by the macroscopic solution obtained in Sec. III, while the
diffusional transport is minute and its contribution to the mo-
mentum balance is negligible. Thus, Eqs.(17) and (18) can
be retained to define the flux in a local Galilean frame mov-
ing with the velocity determined by the available hydrody-
namic solution.

In the outer(bulk) regions the distortion term in Eq.(5)
can be neglected, and the density closely approaches one of
the alternative equilibriars

±, while deviation of the chemical
potentialm from the Maxwell construction can be approxi-
mated asm−ms=g8srs

±dsr−rs
±d. Thus, Eq.(16) reduces to a

linear convective-diffusion equation

]tr
± +=· svrd = D±¹2r±. s20d

The potential difference driving the interphase transport is
Dm=gsrs

−d−m̃ (see Fig. 1), wherem̃ is the shift of equilib-
rium chemical potential in a narrow gap estimated by Eq.
(8). This reduces the interphase transport problem to solving
the far field convective diffusion equations in both phases
using Eqs.(17) and (18) as matching conditions. The prob-
lem is additionally simplified in our case, since the limiting
stage largely determining the shift of chemical potential is
removal of an inert component(air) advected into the narrow
cusp interstice.

FIG. 5. The interfacial velocity near the cusp atd=10−8 and
d=10−6.
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V. TRANSPORT IN GAS AND LIQUID PHASES

In the gas phase within the cusp, density changes in the
transverse direction can be neglected, and the applicable
equation for the vapor density is

]ysD−h]yr
− − uhr−d − 2jsyd = 0, s21d

where jsyd is the local condensation flux at each of the sym-
metric interfaces, andu is the interfacial velocity given by
the above hydrodynamic solution, which is almost constant
at relevant distances from the cusp tip. The transport of the
inert component is governed by a similar equation, but with
a vanishing total flux. Assuming the gas pressurep to be
constant(which is justified by the absence of transverse gra-
dients and negligible interfacial curvature in the cusp), we
have

D−]yr
− + usp/T − r−d = 0, s22d

whereT is temperature. This can be used back in Eq.(21) to
compute the condensation fluxjsyd=−sup/2Tdh8syd. On the
other hand, it follows from the material balance for the two
interfaces on the sides of the cusp that

− crs
+ = jsyd = −

up

2T
h8syd = S3

2
D3/2upÎh

2T
. s23d

Using Eqs.(18) and(23) can estimate the gap width at which
the interaction of the interfaces becomes sufficient to drive
this condensation flux. Since the flux is minute, this distance
turns out to be much larger than the molecular scale. The
estimate is given by

Sd

h
D7/2

<
rs

−

rs
+

uÎd

lT
, s24d

yielding a gap width about 10−7 m. The corresponding length
of the condensation zone from which air should be removed
by diffusion is in a rather macroscopic range of tens of mi-
crometers. The total condensation flux obtained by integrat-
ing Eq. (23) over this length is about 1016 m−2 sec−1. This is
quite minute on a macroscopic scale, as the effective conden-
sation velocityc obtained by dividing the above value byrs

+

is about 10−12 m/sec, and should not affect significantly the
shape of the cusp.

In the liquid phase, one has to solve the convective diffu-
sion equation

D+¹2r+ − u ·=r+ = 0. s25d

Near the cusp, the flow velocityu can be assumed to be
constant and directed down they axis (parallel to the cusp).
Small deviations from equilibrium liquid density are caused
by the lowering of chemical potential, as seen in Fig. 1. The
solution far downstream is

r̃ + ~
Dm

g8srs
+d

expS uy

2D
DK0S uy

2D
D <

c

lg8srs
+d
S uy

2D
D−1/2

.

s26d

Although the source of density depletion is very weak, it
decays extremely slowly downstream, creating a relaxation

effect similar to that envisaged by Shikhmurzaev[13].

VI. CONCLUSIONS

The contest between a true cusp singularity and a stagna-
tion point is resolved by mesoscopic theory including mo-
lecular interactions in favor of the cusp, since the velocity at
the tip computed in Sec. III remains finite, although the dis-
tinction of shapes is blurred due to the diffuse character of
the interface. The theory presented here does not overlap
with that of Eggers[12] operating on much larger scales.
Although condensation does relieve the air pressure through
diffusion, it becomes significant only at mesoscopic dis-
tances from the tip, and viscous pressure may accumulate at
larger scales causing entrainment of macroscopic bubbles.
The latter problem still remains unresolved, since the depen-
dence of the critical capillary number of air entrainment on
the viscosity ratio detected experimentally[20] is much
weaker than that predicted theoretically[12]. An experimen-
tal test of the role of condensation(acting as a last-ditch
defense against entrainment) would require testing fluids
with different volatilities as well as viscosities.

In a more general context, the principal message of this
communication is the importance of interphase transport and
flow induced by molecular interactions in the vicinity of in-
terfacial singularities. This may be relevant in various situa-
tions involving close approach of surfaces, such as coales-
cence failure, dewetting, or spreading. A specific
phenomenon, which, to this author’s knowledge, has never
been described before, is a kind of Marangoni flow induced
by the proximity of interfaces, rather than by composition of
temperature changes. Both Marangoni flow and interphase
transport are identified in the sharp-interface limit of the dif-
fuse interface theory that connects interactions on the mo-
lecular scale to macroscopic hydrodynamic theory.
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APPENDIX A: DENSITY FUNCTIONAL THEORY
FOR A VAN DER WAALS FLUID

This appendix presents a simple example of derivation of
a particular form of the functionfsrd and 1D interaction
kernelQsxd using the modified Lennard-Jones potential with
hard-core repulsion

U = H− Ar−6 sr . dd,

` sr , dd,
h sA1d

whered is the nominal hard-core molecular diameter. Using
this interaction kernel, the free energy per particle of a ho-
mogeneous van der Waals fluid is computed as

fsr,Td = T ln
r

1 − br
− ar, sA2d

whereT is the temperature,b= 2
3pd3 is the excluded volume,

and

L. M. PISMEN PHYSICAL REVIEW E 70, 051604(2004)

051604-6



a = − 2pE
d

`

Usrdr2dr =
2pA

3d3 . sA3d

The 1D interaction kernelQsxd is computed using as an
integration variable the squared distanceq=r2=j2+x2, where
j is the radial distance in the lateral plane. Taking note that
the lower integration limit forq is q0=x2 at uxu.d, q0=d2 at
uxuød, we compute

Qsxd = − pAE
q0

`

q−3dq=5−
1

2
pAx−4 at uxu . d,

−
1

2
pAd−4 at uxu , d.

h

sA4d

The dimensionless form of Eq.(5) obtained by plugging
in there Eqs.(A2) and (A4) is

gsrd − m +
3

4
bE

−`

`

Q̂sjdfrsx + jd − rsxdgdj = 0, sA5d

gsrd =
1

1 − rsxd
− lnS 1

rsxd
− 1D − 2brsxd. sA6d

Here the length is scaled by the nominal molecular cutoff
diameterd, the density byb−1, and the chemical potential by

temperatureT; the interaction kernel isQ̂sxd=−x−4 at x.1,

Q̂sxd=−1 atx,1, and the only remaining dimensionless pa-
rameter is the rescaled inverse temperatureb=a/ sbTd.

APPENDIX B: COMPLEX REPRESENTATION
OF THE FLOW FIELD

This appendix outlines the solution of the hydrodynamic
free surface problem via conformal transformation[10]. A
stationary flow fieldusx,yd of a viscous incompressible liq-
uid and a pressure fieldp satisfy the Stokes and continuity
equations

=p = h¹2u, =·u = 0. sB1d

A 2D flow field usx,yd=su1,u2d=scy,−cxd is defined
through the stream functioncsx,yd solving the biharmonic
equation ¹4c=0. We consider a semi-infinite domain
bounded by a liquid-gas interfaceG; the gas phase is as-
sumed to be inviscid. The boundary conditions onG are

u ·n = 0, n · s ·n = gk,

sI − nnd · s ·n = =g, sB2d

wheren is the normal to the interface, I is the unity tensor,g
is the surface tension, andk is the interfacial curvature. The
elementssi j of the stress tensors can be defined through an
Airy stress functionfsx,yd satisfyingp=h¹2f:

s11 = − 2hfyy, s22 = − 2hfxx, s12 = s21 = 2hfxy.

sB3d

The kinematic boundary condition in Eq.(B2) reduces toc
=const=0, while the normal and tangential stress boundary
conditions are expressed in terms off as

f = 0, n ·= f = g/s2hd. sB4d

In the complex representation, the flow is characterized
by the complex potentialwsz, z̄d=f+ ic. A general bihar-
monic function is expressed using the Goursat representation
as w=w0+ z̄w1, wherew0,w1 are harmonic functions of the
complex variablez=x+ iy; the over bar denotes the complex
conjugate. The two functionsw0,w1 completely specify the
flow field [21]

u = u1 + iu2 = w08szd + zw18szd − w1szd. sB5d

The kinematic and normal stress boundary conditions reduce
to a single complex condition

w0szd + z̄w1szd = 0. sB6d

The tangential stress boundary condition becomes

ImFw1szd
]z̄

]s
G =

g

4h
, sB7d

wheres is the arclength onG.
Following the conformal transformationzszd mapping the

interface on the unit circleuzu=1, the boundary condition
(B6), yields the relation between the two unknown functions
Wkszd=wk(zszd), k=0, 1:

W0szd = − z̄szdW1szdonuzu = 1. sB8d

Using the relation valid on the unit circle,

dz

ds
= iz

z8szd
uz8szdu

= Fdz̄

ds
G−1

, sB9d

the remaining boundary condition(B7) reduces to the equa-
tion for W1szd:

ReFW1szd
zz8szdG = −

g

4huz8szdu
. sB10d

The dependence on the dipole strength is established through
the asymptotics atz→0:

W0szd ~
iu0

zz8s0d
, W1szd ~ −

iu0

az8s0d
. sB11d

The solution is found by using analytic continuation of
the condition(B10) away from the unit circle and computing
W1 with the help of the Poisson formula. In order to cancel
the singularity at the origin, Eq.(B10) is modified to

ReFW1szd
zz8szd

−
W1s0d
zz8s0d

s1 − z2dG = −
g

4huz8szdu
. sB12d

The Poisson formula yields then
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W1szd =
z8szd
z8s0d

W1s0ds1 − z2d −
gzz8szd
8iph

R sj + zddj

uz8szdusj − zdj
.

sB13d

The expression(10) for the tangential velocity on the inter-
face is obtained from this general expression using Eqs.(9),
(B5), (B8), and(B11).

APPENDIX C: COMPUTATION
OF THE CONDENSATION FLUX

The characteristic width of a diffuse interface is of the
same order of magnitude as the molecular cutoff lengthd,
and increases to larger(mesoscopic) distances only close to
the critical point. Across this thin layer, the fluid density
switches between the two alternative values corresponding to
the same constant value of chemical potential. The latter
serves as a bias parameter that shifts the equilibrium in favor
of one of the phases. Under nonequilibrium conditions, the
chemical potential varies on a longer scaleL that is be de-
termined by the geometry of the system. Problems of this
kind, containing a small parametere=d/L, should be solved
by matching expansions ine in regions characterized by two
widely separated scales: theinner region localized at the in-
terface, and theouter region spreading out to the bulk of
both alternative phases. This approach is suitable to track
slow motion of the interphase boundary at times far exceed-
ing the characteristic relaxation time to a stationary profile of
the order parameter in the interfacial layer.

In the inner region, the characteristic scale along the axis
x normal to the nominal front position is the short scaled,
while the coordinatey parallel to the interface is scaled byL.
Inasmuch as the interfacial layer is assumed to be locally
close to equilibrium, the interface is expected to move under
the influence of long-scale changes of the chemical potential.
Therefore the propagation speed should be measurable on a
long scale, so that the “Péclet number” Pe=cL/D based on
the long length scaleL and a typical value of the diffusivity
should be at most ofOs1d. In accordance with this scaling,
we express the propagation speed asec. Retaining the terms
up to the first order, we rewrite Eq.(16) as

dxfGsrdm8sxdg + ecr8sxd = 0. sC1d

This equation is solved together with Eq.(5).
The solution of the inner equations is sought for as an

expansion ine:

r = r0 + er1 + ¯ , m = m0 + em1 + ¯ . sC2d

In the zero order, Eq.(C1) reduces tom09sxd=0, while the
zero order density profiler0sxd is a stationary front verifying
Eq. (5) that exists whenm0 is the equilibrium chemical po-
tential defined by Eq.(3). Formally, one could still add tom0
a linear term, but this would be incompatible with matching
conditions when propagation is slow. Thus, the variable part
of m is restricted in the interfacial layer toOsed.

In the first order, Eq.(C1) reduces to

dxfGsr0dm18sxdg + cr08sxd = 0. sC3d

The solutions of the inner and outer equations should be
matched at a distance from the front that is large on the inner
but small on the outer scale; the result must be independent
of a precise matching position within this range. The match-
ing conditions are

lim
x→±`

m18sxd = ]n
0m±, sC4d

where]n is the derivative along the normaln (directed, by
convention, in the same way as thex axis) and the super-
script 0 indicates the inner limit of the outer solution com-
puted near the interface.

Integrating Eq.(C3) and using Eq.(C4) yields

csr+ − r−d = − Gsr+d]n
0m+ + Gsr−d]n

0m− ; j+ − j−. sC5d

The right-hand side of Eq.(C5) is the difference of the fluxes
on the two sides; thus, this condition defines the speed of the
local interface displacement required to ensure the mass con-
servation. Since the variable part ofm is restricted in the
interfacial layer toOsed, the valuesr± of the density in the
matching regions may deviate from the equilibrium values
rs

±smsd, satisfying ms=gsrs
±d by no more thanOsed. Using

again a linearization ofgsrd, the mass conservation condition
(C5) can be rewritten as

c =
Ds

+]n
0r− − Ds

−]n
0r+

rs
+ − rs

− , sC6d

which reduces to Eq.(17) whenrs
−=rs

− is neglected.
It remains to determine the first-order correction to the

interfacial chemical potential and the related values of den-
sity r± at the matching locations on both sides of the inter-
face. For this purpose, Eq.(C3) is integrated twice to yield

m1sxd = m̄1 +E
0

x j1 − cr0sxd
G„r0sxd…

dx, sC7d

wherem̄1=m1s0d and j1 are integration constants. The latter
equals the flux through the interface, which is determined by
the matching conditions(C4) yielding two equivalent expres-
sions

j1 = Gsu±d]n
0m± + cr± = cr± − j± =

j+rs
− − j−rs

+

rs
+ − rs

− . sC8d

The flux j1 vanishes for a single interface viewed in the
comoving frame.

The first-order expansion of Eq.(5),

g8sr0dr1 − m1 +E
−`

`

Qsjdfr1sx + jd − r1sxdgdj = 0,

sC9d

is a linear inhomogeneous equation of a general formHr1
+C=0 with an integral linear operatorH and an inhomoge-
neity C=−m1. By the Fredholm alternative, the solvability
condition of this equation is orthogonality ofC to the neu-
trally stable eigenmode ofH. The latter is determined by
translational symmetry of the system and coincides with the
derivativer08sxd. Using Eq.(C7) yields
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m̄1srs
+ − rs

−d = − j1J0 + cJ1, sC10d

Jk =E
−`

`

r08sxddxE
0

x r0
ksjd

G„r0sjd…
dj =E

0

` r0
ksjdfrs

+ − rsjdg
G„r0sjd…

dj

−E
−`

0 r0
ksjdfrsjd − rs

−g
G„r0sjd…

dj ; J k
+ − J k

−. sC11d

The limit of the inner solution(C7) at x→ ±` is

lim
x→±`

m1sxd = m̄1 + cJ 0
± − j±K± + x]n

0m±, sC12d

where we have used Eq.(C8) and separated the converging
integralsJ 0

±, defined by Eq.(C11), and

K± =E
0

±` F 1

G„r0sxd…
−

1

Gsrs
±dGdx. sC13d

On the other hand, the chemical potential in the outer
regions close to the interface, i.e., at some distance along the

normaln, which is small when measured on the outer scale,
is presented by expanding the outer solution in Taylor series
as

m± = m̄± + x]n
0m±. sC14d

The last terms in Eqs.(C12) and (C14) match, and the re-
maining constant terms yield two matching conditions for
computingm̄±:

m̄± − ms = m̄1 + cJ 0
± − j±K±. sC15d

The difference between the two values is

Dm = m+ − m− = csJ 0
+ − J 0

− − rs
+K+ + rs

−K−d + j1sK+ − K−d,

sC16d

where we have used Eq.(C8). Equation(18) is a simpli-
fied version of this expression neglecting the integralsK±

which are significant when the mobilityG strongly depends
on density.
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